

Making Cancer History®

Cicely A. Simon
Manager, Continuing Education
Continuing Professional Education

casimon@mdanderson.org D 281-813-4261

Continuing Professional Education T 713-792-2223 7007 Bertner Avenue Suite 1MC16.3214 – Unit 1781 Houston, TX 77030

November 17, 2025

RE: Interventional Pulmonology in Cancer Patients: Advanced Bronchoscopy and Lung Cancer

MD Anderson Cancer Center, Mitchell Research Building

Onstead Auditorium, 3rd Floor 6767 Bertner Avenue Houston, Texas 77030

Dear Potential Exhibitor:

On behalf of The University of Texas MD Anderson Cancer Center, Department of Pulmonary Medicine, Division of Internal Medicine and Activity Directors, Roberto F. Casal, MD, Professor and Julie Lin, MD, Assistant Professor, we would we would like to invite you to exhibit at our upcoming Interventional Pulmonology in Cancer Patients: Advanced Bronchoscopy and Lung Cancer scheduled for March 26, 2026 at MD Anderson Cancer Center Mitchell Research Building in Houston, Texas. We offer a variety of exhibitor packages for your consideration, each designed to provide unique opportunities for participation.

OVERVIEW

The convergence of robotic bronchoscopy and mobile cone-beam CT guidance represents a major advancement in the field of lung cancer diagnosis and staging, offering an unprecedented level of accuracy and procedural efficiency for lung cancer care. This initiative seeks to rigorously evaluate how these synergistic technologies facilitate safe, reliable access to small peripheral lung nodules, enabling acquisition of high-quality tissue for comprehensive molecular profiling and concurrent mediastinal staging—all within a single, minimally invasive procedure. The proposed activity will deliver in-depth, hands-on training in advanced endobronchial ultrasound (EBUS) techniques, including transbronchial cryobiopsy and core lymph node biopsies, with the aim of optimizing diagnostic yield and supporting evidence-based precision medicine in pulmonary oncology. By improving workflow efficiency, patient safety, and specimen adequacy, this project has substantial clinical impact and the potential to transform lung cancer outcomes in diverse patient populations.

NEEDS STATEMENT

Lung cancer remains the leading cause of cancer-related mortality worldwide. Early, accurate diagnosis is essential to improving survival outcomes. The integration of robotic bronchoscopy with mobile cone-beam computed tomography (CBCT) represents a major advancement, enabling minimally invasive, precise access to small peripheral lung nodules while concurrently facilitating mediastinal staging.

PROFESSIONAL PRACTICE GAP

This activity directly addresses significant professional gaps in the integration and application of advanced technologies for pulmonary interventions. Many healthcare professionals lack hands-on experience and formalized training in the use of robotic bronchoscopy and cone-beam CT, which can impede their ability to localize and sample small or peripheral lung lesions with confidence and precision. Challenges in navigating complex airway targets, coupled with technical difficulties in achieving optimal biopsy tool-to-lesion placement, frequently result in suboptimal tissue acquisition, missed diagnoses, and increased procedure-related complications such as pneumothorax or bleeding. Furthermore, inconsistent adherence to evidence-based procedural techniques and a general lack of proficiency in mediastinal lymph node staging undermine diagnostic accuracy and reduce the likelihood of appropriate treatment planning. Addressing these gaps through targeted, hands-on training is essential to improve procedural safety, standardize lung cancer diagnostic practices, and ensure high-quality molecular profiling, directly impacting patient outcomes and advancing the standard of care in interventional pulmonology.

KNOWLEDGE GAP

Despite technical advances, a critical knowledge gap persists regarding the optimal integration of cone-beam CT and robotic bronchoscopy techniques. Key areas requiring improved understanding include precise isocentering methods, minimization of CT-to-body divergence—which impairs lesion targeting accuracy—and evidence-based protocols for subpleural injections and cryobiopsy procedures. The lack of comprehensive knowledge in these domains directly diminishes procedural accuracy, diagnostic yield, and patient safety, underscoring the necessity for educational interventions focused on these specialized competencies.

COMPETENCE GAP

Clinicians currently demonstrate insufficient proficiency in combining cone-beam CT with robotic bronchoscopy for effective navigation of complex pulmonary targets and conducting systematic mediastinal staging. Additionally, the expert use of advanced instruments such as cryoprobes remains variable and underdeveloped. These skills deficits compromise diagnostic accuracy, prolong procedural times, and elevate complication rates. Competency-based training programs emphasizing mastery of integrated technologies and best practices are essential to enhance procedural efficiency, safety, and clinical outcomes.

PERFORMANCE GAP

Variability in real-world practice further compounds gaps in diagnostic performance. Although robotic bronchoscopy combined with cone-beam CT has been shown to achieve Tool-In-Lesion (TIL) rates near 95% and diagnostic yields above 80%, these outcomes are highly operator-dependent and inconsistently applied across institutions. Differences in navigation techniques, lesion targeting accuracy, biopsy tool utilization, and mediastinal staging contribute to widespread variability, procedural inefficiency, and avoidable complications such as pneumothorax. Closing this performance gap through standardized protocols and skill-enhancement training is crucial to achieving consistent, high-quality patient care and optimizing lung cancer diagnostic pathways.

OBJECTIVES

At the conclusion of this educational activity, participants should be able to:

- Utilize appropriate lung cancer screening techniques according to national guidelines and standards.
- Assimilate therapeutic options for the management of airway tumors.
- Interpret available evidence for adjunctive therapies in the palliative and curative management of lung cancer.
- Apply principles of evidence-based medicine in evaluating new technologies.
- Demonstrate the ability to perform Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration on a porcine model.
- Perform endobronchial stenting on a porcine model.
- Incorporate evidence-based best practices for the management of recurrent malignant pleural effusions.

TARGET AUDIENCE

This course should be of interest to board-eligible/certified pulmonologists, thoracic surgeons, and trainees in pulmonary, critical care medicine, and thoracic surgery who have an interest in interventional pulmonology.

EXHIBIT OPPORTUNITIES

PLATINUM - \$10,000

- Five Complimentary Registrations
- Acknowledgement on the Supporter/Exhibitor Tab on the conference webpage, with company name, company logo, link to company website, and the ability to post 3 – 6 product information (pdfs)
- Designated premium location
- Networking breaks that occur in and adjacent to the Exhibit Hall
- Platinum level recognition
- 6 ft. exhibit table (draped) with two chairs
- Wireless internet connection
- Complimentary meals (available with exhibitor badge)

GOLD - \$7,500

- Four Complimentary Registrations
- Acknowledgement on the Supporter/Exhibitor Tab on the conference webpage, with company name, company logo, link to company website
- Designated premium location
- Networking breaks that occur in and adjacent to the Exhibit Hall
- Gold level recognition
- 6 ft. exhibit table (draped) with two chairs
- Wireless internet connection
- Complimentary meals (available with exhibitor badge)

SILVER - \$5,000

- Three Complimentary Registrations
- Acknowledgement on the Supporter/Exhibitor Tab on the conference webpage, with company name and link to company website
- Designated location
- Networking breaks that occur in and adjacent to the Exhibit Hall
- Silver level recognition
- 6 ft. exhibit table (draped) with two chairs
- Wireless internet connection
- Complimentary meals (available with exhibitor badge)

BRONZE - \$2,500

- Two Complimentary Registrations
- Acknowledgement on the Supporter/Exhibitor Tab on the conference webpage with company name
- Designated location
- Networking breaks that occur in and adjacent to the Exhibit Hall
- Bronze level recognition
- 6 ft. exhibit table (draped) with two chairs
- Wireless internet connection
- Complimentary meals (available with exhibitor badge)

CONFERENCE LOCATION

MD Anderson Cancer Center, Mitchell Research Building Onstead Auditorium, 3rd Floor 6767 Bertner Avenue Houston, Texas 77030

REGISTER

Please Click Here for More Information or To Register.

To register as an exhibitor, click on the Exhibitor tab, select Exhibit at this Event

Please note: Registration and an exhibit agreement are necessary to participate as an exhibitor. The exhibit is not considered confirmed until your company has registered, and we have a fully executed agreement. The agreement and payment should be received prior to the activity.

Please let me know if you have any questions or need any additional information for this request. We appreciate your consideration to participate as an exhibitor at this exceptional educational activity.

I look forward to hearing from you soon.

Best,

Cicely A. Simon

Manager, Continuing Education Continuing Professional Education The University of Texas MD Anderson Cancer Center